Mark schemes

Q1.

	(a)	non-metallic element	1	
	(b)	compound	1	
	(c)	noble gases	1	
	(d)	the boiling points increase down the group	1	
	(e)	atoms	1	
	(f)	XO ₂	1	
	(g)	$(2.8)^2 \times 6$	1	
		= 47.04	1	
	(h)	 = 47 (nm²) allow an answer correct to 2 significant figures resulting from an incorrect attempt at the calculation the surface area to volume ratio of the fine particle is 10 times greater 	1	
Q2	(a)	(atoms with the) same number of protons allow atoms with the same atomic number allow atoms of the same element ignore the same number of electrons	1	[10]

(but with) different numbers of neutrons ignore (but with) different mass numbers do **not** accept (but with) different relative atomic mass

(b)	$(A_r =) \frac{(69 \times 60) + (71 \times 40)}{100}$	1
	= 69.8	1
(c)	(number of electrons) = 31	1
	(number of neutrons) = 38	1
(d)	Ga³+	1
(e)	(gallium) fitted in a gap (Mendeleev had left)	1
	(gallium's) properties were predicted correctly (by Mendeleev) allow (gallium's) properties matched the rest of the group	1 [9]

Q3.

(a)	electron	1	
(b)	plum pudding	1	
(c)	alpha	1	
(d)	Bohr	1	
(e)	protons	1	
	neutrons	1	
	protons (and) electrons either order		
(6)		1	
(f)	a sports arena of radius 100 m	1	[8]

Q4.

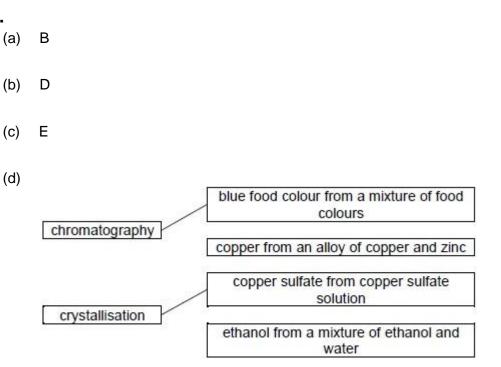
(a)	any	three from: (nuclear model)
	•	mostly empty space

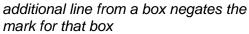
	allow the plum pudding model has no empty space		
	allow the plum pudding model is solid		
	• the positive charge is (all) in the nucleus		
	allow in the plum pudding model the atom is a ball of positive charge (with embedded electrons)		
	do not accept reference to protons		
	 the mass is concentrated in the nucleus 		
	allow in the plum pudding model the mass is spread out		
	do not accept reference to neutrons		
	the electrons and the nucleus are separate		
	allow in the plum pudding model the electrons are embedded		
	allow in the nuclear model the electrons are in orbits		
		3	
(b)	electrons orbit the nucleus		
	do not accept reference to protons / neutrons		
	allow electrons are in energy levels around the nucleus		
	or allow electrons are in shells around the		
	nucleus	1	
	electrons are at specific distances from the nucleus		
		1	
(c)	atomic number is the number of protons	1	
	(and) protons were not discovered until later		
	ignore electrons / neutrons were not discovered until later		
	discovered until later	1	
(d)	so their properties matched the rest of the group		
	allow converse	1	
			[8]

Q5.

(a)	A nucleus					1
	B electron					

Q6.


		1
(b)	electron	1
(c)	3 / three	1
(d)	(atomic number) 5	1
	(mass number) 11	1
(e)	isotope	1
(f)	there are the same number of ${}^{79}_{35}Br$ atoms and ${}^{81}_{35}Br$ atoms	1



1

1

1

		4
(e)	(filter) funnel containing filter paper	1
	suitable vessel for collecting filtrate	1
	sand and water labelled in correct place	1

			1			
(g)	any four from:					
	•	solution is heated				
	•	water evaporates allow water boils / vaporises				
	•	the vapour cools in the condenser				
	•	the vapour condenses or the vapour turns to a liquid				
	•	(pure) water collects in the beaker	4	[13]		

Q7.

(a)	(neutron)	1	0					
		both needed allow (neutron)	1	neutral				
		. ,			1			
	proton	1	(+1)					
		both needed			1			
(h)	number of	protono pluo pout						
(b)	number of	protons plus neuti						
		allow number of	protons a	nd neutrons				
		ignore protons a	nd neutrol	ns unqualified				
		do not accept re	ferences t	o mass or				
		relative mass of						
		neutrons						
					1			
(c)	(the isotop	es contain) differe	nt numboi	s of politrons				
(0)	(the isotop			s of field ons	1			
(d)	most (alph	a) particles passe	d (straight) through (the gold foil)	_			
					1			
	(so) the ma	ass of the atom is	concentra	ted in the nucleus / centre				
	or							
	(so) most o	of the atom is emp	oty space					
		1						
	some (alpha) particles were deflected / reflected							
	(so) the atom has a (positively) charged nucleus / centre							
	(so) the at		•					
		if not awarded fo						
		mass of the aton	n is conce	ntrated in the				

1

nucleus / centre.

Q8. (a)	Ethanol from ethanol and weter Crystalisation Salt from sea water Electrolysis Filtration The different colours in black link Fractional distillation	1 1	
(b)	include a (filter) funnel allow funnel drawn on the diagram ignore clamp stand	1	
(c)	evaporate	1	
	condense must be this order $\frac{2}{20} \times 100$	1	
(d)	= 10 (%)	1	
	an answer of 10 (%) scores 2 marks an answer of 11.1(%) or 90 (%) scores 1 mark		
(e)	an alloy	1	
(f)	the layers in the mixture are distorted	1	
(g)	8000 nm³	1	[11]

1

1

1

1

1

[10]

Q9. (a) nucleus neutron neutron electron proton must be in this order

(b)
$$(A_{+})\frac{(63 \times 70) + (65 \times 30)}{100}$$

$$= 63.6$$
an answer of 63.6 scores 2 marks
(c) copper / Cu
allow ecf from answer to question (b)
(d)
$$\frac{1.2 \times 10^{-10}}{10000}$$
or
$$1.2 \times 10^{-10} \times 1 \times 10^{-4}$$

$$= 1.2 \times 10^{-14} (m)$$
an answer of $1.2 \times 10^{-14} (m)$ scores 2 marks
a correct answer not in standard form scores 1
mark

Q10.

(a)	В	1
(b)	C	1
(c)	A	1

(d)	sum of protons and neutrons	
	allow number of protons and neutrons	1
(e)	between 69.5 and 70.0	1
(f)	Chadwick provided the evidence to show the existence of neutrons allow Chadwick discovered neutrons	1
	(this was necessary because) isotopes have the same number of protons allow (this was necessary because) isotopes have the same atomic number	
	or (this was necessary because) isotopes are atoms of the same element <i>ignore isotopes have the same number</i>	
	of electrons	1
	but with different numbers of neutrons	
	allow but with different mass (numbers)	1

Q11.

(a)	proton	1
(b)	electron	1
(c)	7	1
	4	1
	in this order only	•
(d)	isotopes	1
(e)	neutron	1
(f)	$\frac{(10 \times 20) + (11 \times 80)}{100}$	1
	= 10.8	1

an answer of 10.8 scores 2 marks

(g)	<u>0.2</u> 10000	1	
	= 2×10^{-5} (nm) allow 0.00002 (nm) an answer of 2×10^{-5} (nm) scores 2 marks	1	[10]
Q12. (a)	mass number allow the number of protons + neutrons	1	
(b)	6.02 × 10 ²³	1	
(c)	Level 2 (3-4 marks): Scientifically relevant features are identified; the ways in which they are similar / different is made clear.		
	Level 1 (1-2 marks): Relevant features are identified and differences noted.		
	Level 0 No relevant content.		
	Indicative content		
	similarities		

- ٠
- both have positive charges both have (negative) electrons •
- neither has neutrons •

differences

plum pudding model	nuclear model
ball of positive charge (spread throughout)	positive charge concentrated at the centre
electrons spread throughout (embedded in the ball of positive charge)	electrons outside the nucleus
no empty space in the atom	most of the atom is empty space
mass spread throughout	mass concentrated at the centre

$$\frac{(24 \times 78.6) + (25 \times 0.1) + (26 \times 11.3)}{100}$$

(d)

Page 10 of 16

	or (24 × 0.786) + (25 × 0.101) + (26 × 0.113)	
	= 24.3	1
	an answer of 24.3 scores 2 marks	
		[8]
Q13.		
(a)	B	1
(b)	D	1
(c)	E	
(4)		1
(d)	C	1
(e)	92.5 × 6 and 7× 7.5	
		1
	<u>607.5</u> 100	
	C 075	1
	6.075	1
	6.08	1
	allow 6.08 with no working shown for 4 marks	

[8]

Q14.

(a)	13 (protons)	
	The answers must be in the correct order.	
	if no other marks awarded, award 1 mark if number	
	of protons and electrons are equal	1
	14 (neutrons)	1
		1
	13 (electrons)	1
(b)	has three electrons in outer energy level / shell allow electronic structure is 2.8.3	
		1

(c) Level 3 (5–6 marks):

A detailed and coherent comparison is given, which demonstrates a broad knowledge and understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.

Level 2 (3–4 marks):

A description is given which demonstrates a reasonable knowledge and understanding of the key scientific ideas. Comparisons are made but may not be fully articulated and / or precise.

Level 1 (1–2 marks):

Simple statements are made which demonstrate a basic knowledge of some of the relevant ideas. The response may fail to make comparisons between the points raised.

0 marks:

No relevant content.

Indicative content

Physical

Transition elements

- high melting points
- high densities
- strong
- hard

Group 1

- low melting points
- low densities
- soft

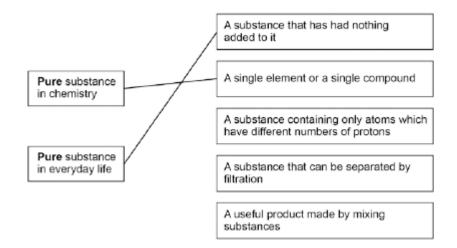
Chemical

Transition elements

- low reactivity / react slowly (with water or oxygen)
- used as catalysts
- ions with different charges
- coloured compounds

Group 1

- very reactive / react (quickly) with water / non-metals
- not used as catalysts
- white / colourless compounds
- only forms a +1 ion


6

[10]

Q15.

(a) Air 2 Steel 1

(b)

Allow **1** mark for the correct meanings linked to context but incorrect way around

		1	
(c)	Damp litmus paper turns white	1	
(d)	Iron(III)	1	[6]
Q16. (a)	(i) 7	1	
	(ii) —1	1	
	(iii) neutrons	1	
(b)	number of protons	1	
(c)	atom Y	1	
(d)	(i) Ne allow neon	1	

(ii) has a full outer shell allow in Group 0 allow a noble gas

or

full outer energy level allow the shells are full

[7]

or has 8 electrons in its outer shell ignore in Group 8 1 Q17. (a) (i) electronic structure 2,3 drawn allow any representation of electrons, such as, dots, crosses, or numbers (2,3) 1 (ii) nucleus 1 (iii) protons and neutrons do not allow electrons in nucleus 1 (relative charge of proton) +1 allow positive 1 (relative charge of neutron) 0 allow no charge/neutral 1 ignore number of particles (b) too many electrons in the first energy level or inner shell allow inner shell can only have a maximum of 2 electrons 1 too few electrons in the second energy level or outer shell allow neon has 8 electrons in its outer shell or neon does not have 1 electron in its outer shell allow neon has a stable arrangement of electrons or a full outer shell 1 neon does not have 9 electrons or neon has 10 electrons allow one electron missing allow fluorine has 9 electrons 1 ignore second shell can hold (maximum) 8 electrons or 2,8,8 rule or is a noble gas or in Group 0 max 2 marks if the wrong particle, such as atoms instead of electrons if no other mark awarded allow 1 mark for the electronic structure of neon is 2,8

Q18.				
(a)	(i)	7 / seven	1	
			1	
	(ii)	1 do not accept – 1		
		Electron	1	
		Election	1	
	(iii)	isotopes		
			1	
(b)	(i)	(sodium +) fluorine \rightarrow sodium fluoride	1	
	(ii)	compounds		
	(11)	compounds	1	
	(iii)	mole		
			1	
	(iv)	sodium (atom) loses	1	
		fluorine (atom) gains one electron ions formed	1	
			1	
		allow sodium forms positive (ion) or fluorine forms	1	
		negative (ion) allow form ionic bond		
		allow to gain a full outer shell of electrons		
		allow forms noble gas structure		
		max 3 if reference to incorrect particle / bonding		
	(v)	Dissolve in water	1	
		High melting point		
			1	[13]
Q19.				
(a)	(i)	(mass number = 16) because there are 8 protons and 8 neutrons (ir the nucleus)	۱	
		accept mass number is total number of protons and		
		neutrons for 1 mark	2	

(ii) same number of protons **or** both have 6 protons *accept same atomic number*

		¹² C has 6 neutrons	1
		¹⁴ C has 8 neutrons	
		accept different number of neutrons for 1 mark numbers, if given, must be correct incorrect reference to electrons = max 2 marks	1
(b)	(i)	2 bonding pairs	1
		additional unbonded electrons negates this mark	1
		4 unbonded electrons around oxygen	1
		accept dot, cross or e or – or any combination	1
	(ii)	covalent	1
	(iii)	 any one from: no delocalised / free electrons ignore mobile electrons no overall electric charge accept no charge (carriers) no ions do not accept any implications of the presence of ions 	1
(c)	(i)	larger accept the size of a few hundred atoms accept atoms are smaller (than nanoparticles) allow up to 1000 atoms)	1
	(ii)	(nanoparticles have) large(r) surface area	1 [11]